首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34054篇
  免费   5863篇
  国内免费   7701篇
测绘学   4661篇
大气科学   5514篇
地球物理   6332篇
地质学   14561篇
海洋学   4399篇
天文学   5306篇
综合类   2423篇
自然地理   4422篇
  2024年   82篇
  2023年   363篇
  2022年   1060篇
  2021年   1239篇
  2020年   1409篇
  2019年   1511篇
  2018年   1363篇
  2017年   1532篇
  2016年   1608篇
  2015年   1811篇
  2014年   2116篇
  2013年   2365篇
  2012年   2269篇
  2011年   2481篇
  2010年   2155篇
  2009年   2565篇
  2008年   2507篇
  2007年   2491篇
  2006年   2380篇
  2005年   2081篇
  2004年   1814篇
  2003年   1570篇
  2002年   1356篇
  2001年   1176篇
  2000年   1015篇
  1999年   921篇
  1998年   802篇
  1997年   595篇
  1996年   528篇
  1995年   481篇
  1994年   452篇
  1993年   399篇
  1992年   238篇
  1991年   200篇
  1990年   137篇
  1989年   115篇
  1988年   105篇
  1987年   58篇
  1986年   42篇
  1985年   52篇
  1984年   35篇
  1983年   17篇
  1982年   26篇
  1981年   13篇
  1980年   20篇
  1979年   11篇
  1978年   14篇
  1977年   18篇
  1976年   3篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
This paper presents the results of a parametric study of irregular wave run-up over fringing reefs using the shock-capturing Boussinesq wave model Funwave-TVD to better understand the role of fringing reefs in the mitigation of wave-driven flooding. Laboratory experiments were newly performed with a typical fringing reef profile and typical hydrodynamic conditions to validate the model. Experimental data shows irregular wave run-ups are dominated by the low-frequency motions and confirms the run-up resonant phenomenon over the back-reef slope, which has been revealed in previous numerical studies. It is demonstrated that irregular wave evolution and run-up over fringing reefs are reasonably reproduced by the present model with a proper grid size. However, the infragravity run-up height and highest 2% run-up height over the back-reef slope are under-predicted due to the underestimation of the infragravity wave height over the reef flat. The validated model was then utilized to model irregular wave transformations and run-ups under different conditions. Through a series of numerical experiments, the effects of key hydrodynamic and reef geometry parameters, including the reef flat width, water depth over the reef flat, fore-reef slope angle and back-reef slope angle, on the irregular wave run-up were investigated. Variations of spectral components of irregular wave run-ups were examined to better understand the physical process underlying the effect of each parameter.  相似文献   
102.
The impact of dropped anchor on submarine photoelectric composite cables may possibly cause electrical faults, i.e. electricity and optical signal transmission failure. In order to study the impact capacity and structural impact failure mechanism, a test setup is designed originally to examine the structural and functional integrity. A detailed finite element model (FEM) is created, considering material nonlinearity and component interaction. A parametric analysis has been performed to predict the deformation of components and impact forces, under different impact velocities and collision directions. Relationships between the armor layer indentation rate and that of internal power and optical units are achieved. The impact deformation of internal entities can be evaluated intuitively by armor layer indentation. The proposed experimental and numerical methods are well correlated, suitable to assess the impact capacity of subsea power cables and assist the protection design of subsea power cables in engineering.  相似文献   
103.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
104.
杨金湘  王佳 《海洋学报》2018,40(4):30-40
本文建立了一个气候态驱动的台湾海峡物理-生态耦合模型(ROMS-NPZD)。与遥感观测数据的比较表明,模型能够较好地模拟出冬、夏季台湾海峡主要的温度和叶绿素分布特征。模型揭示了夏季台湾海峡营养盐输运的东、西通道,与南海次表层水的入侵通道一致;冬季,海峡中的营养盐来源于闽浙沿岸水和通过澎湖水道入侵的南海次表层水。模拟结果表明:夏季,通过海峡流入东海的氮主要为有机氮;冬季,闽浙沿岸流为海峡和南海北部陆架提供了丰富的营养盐,不仅如此,南海次表层水进入海峡的营养盐通量与夏季相当。  相似文献   
105.
Combining a linear regression and a temperature budget formula, a multivariate regression model is proposed to parameterize and estimate sea surface temperature(SST) cooling induced by tropical cyclones(TCs). Three major dynamic and thermodynamic processes governing the TC-induced SST cooling(SSTC), vertical mixing, upwelling and heat flux, are parameterized empirically using a combination of multiple atmospheric and oceanic variables:sea surface height(SSH), wind speed, wind curl, TC translation speed and surface net heat flux. The regression model fits reasonably well with 10-year statistical observations/reanalysis data obtained from 100 selected TCs in the northwestern Pacific during 2001–2010, with an averaged fitting error of 0.07 and a mean absolute error of 0.72°C between diagnostic and observed SST cooling. The results reveal that the vertical mixing is overall the pre dominant process producing ocean SST cooling, accounting for 55% of the total cooling. The upwelling accounts for 18% of the total cooling and its maximum occurs near the TC center, associated with TC-induced Ekman pumping. The surface heat flux accounts for 26% of the total cooling, and its contribution increases towards the tropics and the continental shelf. The ocean thermal structures, represented by the SSH in the regression model,plays an important role in modulating the SST cooling pattern. The concept of the regression model can be applicable in TC weather prediction models to improve SST parameterization schemes.  相似文献   
106.
Application of the standard Eulerian model to simulations of sand scour results in unrealistic phenomena. Therefore, the present work develops a modified Eulerian model based on sand incipient motion theory. The modified model is applied for simulating a two-dimensional single vertical jet and a moving planar jet. The simulation results generally demonstrate fairly good agreement with published results of scour profiles and the velocity contours of the water and sand phases. In addition, equations to describe self-similar scour profiles for the moving planar jet cases are given. The results demonstrate that the modified model efficiently and accurately simulates the two-dimensional sand scour produced by jets, particularly for the moving jet cases.  相似文献   
107.
渤海海峡跨海通道建设将极大改变环渤海乃至整个东部沿海的交通格局,势必对其目标城市大连、烟台带来直接的经济影响,同时也会对辽东半岛、山东半岛乃至东北、华北和华东不同尺度地区的经济联系产生深远影响。文章选取山东省17个和辽宁省14个地级市的地区的生产总值、城市人口以及城市间的最短时间距离等指标,测度渤海海峡跨海通道建成前后,对山东、辽宁两省区域城市经济联系的影响。研究表明:渤海海峡跨海通道建成后,对大连、烟台间的经济联系强度有显著提高,各城市经济联系度的平均增幅明显不同;同时,受距离衰减规律的影响,两省的城市分别以大连、烟台为中心,根据距离远近及城市自身发展程度分为4个层次,经济联系强度由内向外逐层次减弱;从整体上看,渤海通道的建设对带动两省城市之间的经济联系度都有大幅度提升。  相似文献   
108.
付金宇  李颖 《海洋通报》2018,(2):235-240
为有效对港区大气污染进行治理、分析船舶尾气,本文详细介绍了一种基于高斯烟羽模型,通过MATLAB模拟仿真模型,其包括实验仿真过程、技术原理及理论模型对船舶尾气扩散进行的研究。该模型是在传统的高斯烟羽模型的基础上,通过对实源像源进行加权选择输入参数;通过矢量合成确定了气体扩散的方向,利用合成后的"风速"进行计算仿真,有效模拟了船舶尾气在港区或者海洋环境中的气体扩散模型。其模型简单且可以有效模拟船舶尾气扩散。并且进一步对后续模型的精确优化进行分析。  相似文献   
109.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
110.
Jing Fu  Jun Niu  Bellie Sivakumar 《水文研究》2018,32(12):1814-1827
Vegetation cover plays an important role in linking the atmosphere, water, and land and is deemed as a key indicator in the terrestrial ecological system. Therefore, it is of great importance to monitor vegetation dynamics and understand the mechanisms of vegetation change, including that driven by climate change. This study examines (a) the evolution of vegetation dynamics over the Heihe River Basin in the typical arid zone in north‐western China using nonparametric Mann–Kendall test and Thiel Sen's slope; (b) the relationships between remotely sensed vegetation indices (normalized difference vegetation index [NDVI] and enhanced vegetation index [EVI]) and hydroclimatic variables based on correlation analysis; and (c) the prediction of vegetation anomalies using a multiple linear regression model. For the analysis, the Moderate Resolution Imaging Spectroradiometer NDVI/EVI product and the gridded daily meteorological data at a spatial resolution of 0.125° over the period 2001–2010 are considered. The results indicate that vegetation cover improved over a large proportion during 2001–2010, with a significant trend towards warm and wet, characterized by an increase in average annual temperature and precipitation by 0.042 °C/year and 5.8 mm/year, respectively. We test the feasibility of NDVI and EVI in quantifying the responses of vegetation anomaly to climate change and develop a statistical model to predict vegetation dynamics in the basin. The NDVI‐based model is found to be more reliable than the EVI‐based model, partly due to the vegetation characteristics and geomorphologic properties of the study region. The proposed model performs well when there is no lag time between meteorological factors and vegetation indices for grassland and cropland, whereas 1‐month lead time prediction is found to be best for forest. The soil water content is introduced as an extra explanatory variable, which effectively improves the prediction accuracy for different land use types. In general, the predictive ability of the proposed model is stable and satisfactory, and the model can provide useful early warning information for regional water resources management under changing climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号